Четверг, 09.01.2025, 20:51
Учится, учится и ещё раз учится!!!
Приветствую Вас Гость | RSS
Форма входа


Приветствуем Вас: Гость
Группа: Гости
Пол:
На сайте: дней
Ты пользователь № 0
Ваш Ip: 3.15.225.188

Меню сайта
Календарь
«  Январь 2025  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728293031

Момент инерции твердого тела

 

Чтобы найти момент инерции тела, надо просуммировать момент инерции всех материальных точек, составляющих данное тело

(5.4)

В общем случае, если тело сплошное, оно представляет собой совокупность множества точек с бесконечно малыми массами dm, и моменты инерции тела определяется интегралом

  (5.5)

где r - расстояние от элемента dm до оси вращения.

Распределение массы в пределах тела можно охарактеризовать с помощью плотности   (5.5)

где m - масса однородного тела, V - его объем. Для тела с неравномерно распределенной массой это выражение дает среднюю плотность.

Плотность в данной точке в этом случае определяется следующим образом

и тогда  (5.6)

Пределы интегрирования зависят от формы и размеров тела Интегрирование уравнения (5.5) наиболее просто осуществить для тех случаев, когда ось вращения проходит через центр тяжести тела. Рассмотрим результаты интегрирования для простейших (геометрически правильных) форм твердого тела, масса которого равномерно распределена по объему.

Момент инерции полого цилиндра с тонкими стенками, радиуса R.

Для полого цилиндра с тонкими стенками

Сплошной однородный диск. Ось вращения является осью диска радиуса R. и массы m с плотностью  Высота диска h. Внутри диска на расстоянии вырежем пустотелый цилиндр с толщиной стенки dr и массой dm. Для него

dJ=r2dm

Весь диск можно разбить на бесконечное множество цилиндров, а затем просуммировать:

Момент инерции шара относительно оси, проходящей через центр тяжести.

Момент инерции стержня длиной L и массой m относительно оси, проходящей:

а) через центр стержня -

б) через начало стержня -

Теорема Штейнера. Имеем тело, момент инерции которого относительно оси, проходящей через его центр масс O1O’ известен. Необходимо определить момент инерции относительно произвольно оси OO1 параллельной оси OO1’. Согласно теореме Штейнера, момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, проходящей через центр масс и параллельной данной оси, плюс произведение массы тела на квадрат расстояния между осями:  (5.7)

Нас посетили
Онлайн всего: 1
Гостей: 1
Пользователей: 0

Сейчас на сайте
 
 Нас посетили
Гость ,
Поиск
Друзья сайта
Самый реальный зароботок Rambler's Top100
Заработок для веб мастера!
Зароботай на своём сайте!
Реклама


Copyright MyCorp © 2025