Сложение механических колебаний
Сложение гармонических колебаний, направленных вдоль одной прямой.
Рассмотрим сложение одинаково направленных колебаний одного периода, но отличающихся начальной фазой и амплитудой. Уравнения складываемых колебаний заданы в следующем виде:
где х1 и х2 - смещения; А1 и А2 - амплитуды; ϕ1 и ϕ2 - начальные фазы складываемых колебаний. Амплитуду результирующего колебания удобно определить с помощью векторной диаграммы (рис. 7.5), на которой отложены векторы амплитуд 1 и 2 складываемых колебаний под углами ϕ1 и ϕ2 к оси х и по правилу параллелограмма получен вектор амплитуды суммарного колебания . Если равномерно вращать систему векторов (параллелограмм) и проектировать векторы на ось OY, то их проекции будут совершать гармонические колебания в соответствии с заданными уравнениями. Взаимное расположение векторов 1 и 2 при этом остается неизменным, поэтому колебательное движение проекции результирующего вектора тоже будет гармоническим.
Отсюда следует вывод, что суммарное движение - гармоническое колебание, имеющее заданную циклическую частоту. Определим модуль амплитуды А результирующего колебания В ∆ООК1 угол ОК1К=[π-(ϕ2-ϕ1)] (из равенства противоположных углов параллелограмма).
Следовательно
2(ϕ2-ϕ1)+2α=2π
отсюда
α=[π-(ϕ2-ϕ1)].
Согласно теореме косинусов
А2=А12+А22-2А1А2cos[π-(ϕ2-ϕ1)]
или А2=А12+А22-2А1А2cos(ϕ2-ϕ1) (7.12)
Начальная фаза ϕ0 результирующего колебания определяется из ∆ОКD :
Соотношения для фазы и амплитуды позволяют найти амплитуду и начальную фазу результирующего движения и составить его уравнение
X=Asin(ωt+ϕ)
Биения
Рассмотрим случай, когда частоты двух складываемых колебаний мало отличаются друг от друга ω2-ω1=∆ω , и пусть амплитуды одинаковы и начальные фазы ϕ0 , т.е. x1=Asin(ω1t), x2=Asin(ω2t) Сложим эти уравнения аналитически
Преобразуем
Тогда
Так как все же медленно изменяется, величину нельзя назвать амплитудой в полном смысле этого слова (амплитуда величина постоянная). Условно эту величину можно назвать переменной амплитудой. График таких колебаний показан на рис. 1.6 Складываемые колебания имеют одинаковые амплитуды, но различны периоды, при этом периоды Т1 и Т2 отличаются незначительно друг от друга. При сложении таких колебаний наблюдаются биения. Число n биений в секунду определяется разностью частот складываемых колебаний, т.е.n=ν1 ν2
Биения можно наблюдать при звучании двух камертонов, если частоты и колебаний близки друг к другу.
Сложение взаимно перпендикулярных колебаний.
Пусть материальная точка одновременно участвует в двух гармонических колебаниях, совершающихся с одинаковыми периодами Т в двух взаимно перпендикулярных направлениях. С этими направлениями можно связать прямоугольную систему координат XOY, расположив начало координат в положении равновесия точки. Обозначим смещение точки С вдоль осей ОХ и OY, соответственно, через х и у. (рис 7.7)
Рассмотрим несколько частных случаев.
A. Начальные фазы колебаний одинаковы. Выберем момент начала отсчета времени таким образом, чтобы начальные фазы обоих колебаний были равны нулю. Тогда смещения вдоль осей ОХ и OY можно выразить уравнениями:
x=A1sin(ωt), y=A2sin(ωt)
Поделив почленно эти равенства, получим уравнения траектории точки С:
или
Следовательно, в результате сложения двух взаимно перпендикулярных колебаний точка С колеблется вдоль отрезка C1C2 прямой, проходящей через начало координат (рис. 7.7).
Б. Начальная разность фаз равна π.Уравнения колебания в этом случае имеют вид:
x=A1sin(ωt+π)=- A1sin(ωt+π), y=A2sin(ωt)
Уравнение траектории точки (7.15)
Следовательно, точка С колеблется вдоль отрезка C1C2 прямой, проходящей через начало координат, но лежащие в других квадрантах, чем в первом случае. Амплитуда А результирующих колебаний в обоих рассмотренных случаях равна
В. Начальная разность фаз равна .
Уравнения колебаний имеют вид:
Разделим первое уравнение на A1 , второе – на A2 :
Возведем оба равенства в квадрат и сложим. Получим следующее уравнение траектории результирующего движения колеблющейся точки (7.16)
Колеблющаяся точка С движется по эллипсу с полуосями A1 и A2. При равных амплитудах A1=A2=A траекторией суммарного движения будет окружность x2+y2=A2 В общем случае при , но кратным, т.е. ω1= ω2k , при сложении, взаимно перпендикулярных колебаний колеблющаяся точка движется по кривым, называемым фигурами Лиссажу. Конфигурация этих кривых зависит от соотношения амплитуд, начальных фаз и периодов составляющих колебаний.