Четверг, 09.01.2025, 21:08
Учится, учится и ещё раз учится!!!
Приветствую Вас Гость | RSS
Форма входа


Приветствуем Вас: Гость
Группа: Гости
Пол:
На сайте: дней
Ты пользователь № 0
Ваш Ip: 3.148.112.15

Меню сайта
Календарь
«  Январь 2025  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728293031
Закон Джоуля-Ленца в интегральной и дифференциальной формах

Если в проводнике течет постоянный ток и проводник остается неподвижным, то работа сторонних сил расходуется на его нагревание. Опыт показывает, что в любом проводнике происходит выделение теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника. Если на концах участка проводника имеется разность потенциалов , тогда работу по переносу заряда q на этом участке равна

По определению I= q/t. откуда q= I t. Следовательно

Так как работа идет па нагревание проводника, то выделяющаяся в проводнике теплота Q равна работе электростатических сил

(17.13)

Соотношение (17.13) выражает закон Джоуля-Ленца в интегральной форме. Введем плотность тепловой мощности , равную энергии выделенной за единицу время прохождения тока в каждой единице объема проводника

где S - поперечное сечение проводника, - его длина. Используя (1.13) и соотношение , получим


Но - плотность тока, а , тогда

с учетом закона Ома в дифференциальной форме , окончательно получаем

(17.14)

Формула (17.14) выражает закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.

Нас посетили
Онлайн всего: 1
Гостей: 1
Пользователей: 0

Сейчас на сайте
 
 Нас посетили
Гость ,
Поиск
Друзья сайта
Самый реальный зароботок Rambler's Top100
Заработок для веб мастера!
Зароботай на своём сайте!
Реклама


Copyright MyCorp © 2025